IA
Interactive RAG: Conversational Retrieval for Live Assistants
1 de noviembre de 202512 min
por William Marrero Masferrer#RAG#Chatbots#Conversation#Memory
TL;DR
Interactive RAG integrates retrieval into multi-turn conversations, preserving context and letting users steer follow-ups for better answers.
What Is Interactive RAG?
A conversational setting where each user message triggers retrieval over a KB and chat history, then generation with updated context.
When to Use Interactive RAG
- Customer support assistants over internal KBs
- Tutoring systems enabling clarifying questions
- Any app needing live user feedback loops
Building Interactive RAG in N8N
- Trigger on each user message
- Retrieve from memory (chat turns) and static corpus
- Generate response and detect if user wants more detail
- Branch using If/Switch nodes to fetch more and continue
Strengths & Weaknesses
Strengths: adjusts on the fly, captures corrections, feels assistant-like. Weaknesses: context management is hard, long chats increase token cost, evaluation is trickier.
Metrics to Track
- Dialogue relevance and satisfaction
- Turn-level accuracy and retention of context
- Latency per turn and overall cost
Artículos relacionados
¿Te gustó este artículo?
Sígueme para más recursos sobre RAG y N8N workflows.
Contáctame