Volver al Blog
IA

Interactive RAG: Conversational Retrieval for Live Assistants

1 noviembre 202512 min
por William Marrero Masferrer
#RAG#Chatbots#Conversation#Memory

Interactive RAG runs retrieval each turn in a conversation and adapts with user feedback to clarify and refine answers.

TL;DR

Interactive RAG integrates retrieval into multi-turn conversations, preserving context and letting users steer follow-ups for better answers.

What Is Interactive RAG?

A conversational setting where each user message triggers retrieval over a KB and chat history, then generation with updated context.

When to Use Interactive RAG

  • Customer support assistants over internal KBs
  • Tutoring systems enabling clarifying questions
  • Any app needing live user feedback loops

Building Interactive RAG in N8N

  • Trigger on each user message
  • Retrieve from memory (chat turns) and static corpus
  • Generate response and detect if user wants more detail
  • Branch using If/Switch nodes to fetch more and continue

Strengths & Weaknesses

Strengths: adjusts on the fly, captures corrections, feels assistant-like. Weaknesses: context management is hard, long chats increase token cost, evaluation is trickier.

Metrics to Track

  • Dialogue relevance and satisfaction
  • Turn-level accuracy and retention of context
  • Latency per turn and overall cost

¿Te gustó este artículo?

Sígueme en mis redes o comparte tus preguntas sobre RAG. Tengo más recursos y templates de N8N disponibles.

Contáctame