IA
Self-RAG: Retrieve, Generate, Critique for Higher Factuality
1 de noviembre de 202514 min
por William Marrero Masferrer#RAG#Self-critique#Reflection#Verifier
TL;DR
Self-RAG lets the model decide when to retrieve and when to critique its own outputs, reducing hallucinations via explicit reflection and control tokens/prompting.
What Is Self-RAG?
A single LM (or orchestrated prompts) that interleaves retrieval and self-critique using special tokens or structured steps, adapting to the query on the fly.
When to Use Self-RAG
- Factual report writing and long-form educational content
- Systems needing explicit citation checks
- Iterative summarization and refinement tasks
Simulating Self-RAG in N8N
- Generate an initial answer (OpenAI node)
- Run a critique step: ‘Is the answer fully supported by sources?’
- If low confidence, trigger additional retrieval and regenerate
- Optionally mark segments with <retrieve>/<critique> style tokens
Strengths & Weaknesses
Strengths: adaptive retrieval and self-correction; improved factuality and controllable behavior. Weaknesses: complex design; may require custom training; higher latency and orchestration cost.
Metrics to Track
- Factuality scores and citation precision
- Answer accuracy vs baseline RAG
- Additional latency/cost from critique steps
Artículos relacionados
¿Te gustó este artículo?
Sígueme para más recursos sobre RAG y N8N workflows.
Contáctame