Volver al Blog
IA

Self-RAG: Retrieve, Generate, Critique for Higher Factuality

1 de noviembre de 202514 min
por William Marrero Masferrer
#RAG#Self-critique#Reflection#Verifier

TL;DR

Self-RAG lets the model decide when to retrieve and when to critique its own outputs, reducing hallucinations via explicit reflection and control tokens/prompting.

What Is Self-RAG?

A single LM (or orchestrated prompts) that interleaves retrieval and self-critique using special tokens or structured steps, adapting to the query on the fly.

When to Use Self-RAG

  • Factual report writing and long-form educational content
  • Systems needing explicit citation checks
  • Iterative summarization and refinement tasks

Simulating Self-RAG in N8N

  • Generate an initial answer (OpenAI node)
  • Run a critique step: ‘Is the answer fully supported by sources?’
  • If low confidence, trigger additional retrieval and regenerate
  • Optionally mark segments with <retrieve>/<critique> style tokens

Strengths & Weaknesses

Strengths: adaptive retrieval and self-correction; improved factuality and controllable behavior. Weaknesses: complex design; may require custom training; higher latency and orchestration cost.

Metrics to Track

  • Factuality scores and citation precision
  • Answer accuracy vs baseline RAG
  • Additional latency/cost from critique steps

Artículos relacionados

¿Te gustó este artículo?

Sígueme para más recursos sobre RAG y N8N workflows.

Contáctame