IA
Contextual RAG: Context-Preserved Retrieval that Finds What Matters
1 de noviembre de 202513 min
por William Marrero Masferrer#RAG#Contextual Embeddings#Hybrid#Rerank
TL;DR
Prepend context snippets to chunks before indexing and combine dense + sparse retrieval; rerank to cut failed retrievals significantly.
What Is Contextual RAG?
A retrieval technique that preserves broader context within each chunk so similarity search has more clues, combined with BM25 and reranking.
When to Use Contextual RAG
- Long enterprise docs and manuals
- Legal or technical content where paragraphs lose meaning alone
- Customer support over large knowledge bases
Building Contextual RAG in N8N
- Generate short context blurbs per chunk (preprocessing step)
- Index contextualized chunks in vector DB and a BM25 index
- At query: perform hybrid search and apply Reciprocal Rank Fusion
- Rerank top candidates and generate with citations
Strengths & Weaknesses
Strengths: large gains in retrieval success and end-to-end accuracy. Weaknesses: extra preprocessing cost, dual indices, relies on blurb quality.
Metrics to Track
- Retrieval success rate and recall
- Answer F1 with/without contextualization
- Latency impact from hybrid + rerank
Artículos relacionados
¿Te gustó este artículo?
Sígueme para más recursos sobre RAG y N8N workflows.
Contáctame