Volver al Blog
IA

Contextual RAG: Context-Preserved Retrieval that Finds What Matters

1 de noviembre de 202513 min
por William Marrero Masferrer
#RAG#Contextual Embeddings#Hybrid#Rerank

TL;DR

Prepend context snippets to chunks before indexing and combine dense + sparse retrieval; rerank to cut failed retrievals significantly.

What Is Contextual RAG?

A retrieval technique that preserves broader context within each chunk so similarity search has more clues, combined with BM25 and reranking.

When to Use Contextual RAG

  • Long enterprise docs and manuals
  • Legal or technical content where paragraphs lose meaning alone
  • Customer support over large knowledge bases

Building Contextual RAG in N8N

  • Generate short context blurbs per chunk (preprocessing step)
  • Index contextualized chunks in vector DB and a BM25 index
  • At query: perform hybrid search and apply Reciprocal Rank Fusion
  • Rerank top candidates and generate with citations

Strengths & Weaknesses

Strengths: large gains in retrieval success and end-to-end accuracy. Weaknesses: extra preprocessing cost, dual indices, relies on blurb quality.

Metrics to Track

  • Retrieval success rate and recall
  • Answer F1 with/without contextualization
  • Latency impact from hybrid + rerank

Artículos relacionados

¿Te gustó este artículo?

Sígueme para más recursos sobre RAG y N8N workflows.

Contáctame