Volver al Blog
IA

Standard RAG: The Foundation of Retrieval-Augmented Generation

1 de noviembre de 202512 min
por William Marrero Masferrer
#RAG#AI#N8N#Vector Database#BM25

TL;DR

Standard RAG pairs an LLM with a retriever (often a vector DB) to ground answers in external documents, reducing hallucinations and enabling fresh, domain-specific knowledge.

What Is Standard RAG?

A retrieve-then-generate pipeline: split text, embed chunks, store in a vector index, perform similarity (or hybrid) search for a query, then pass retrieved context + question to the LLM for an answer.

When to Use Standard RAG

  • Open-domain QA and document search
  • Customer support chatbots grounded in KBs
  • Research assistants requiring up-to-date facts
  • Legal/medical Q&A where citations are needed

Building Standard RAG in N8N

  • Preprocess: split documents into chunks (Function/Built-in nodes)
  • Embed chunks and store in a vector DB (e.g., Chroma, Pinecone)
  • On query: compute embedding and run top-K similarity search
  • Optionally fuse with BM25/hybrid ranking or rerank
  • Concatenate top results into prompt and call LLM
  • Return answer with citations; log for evaluation

Strengths & Weaknesses

Strengths: accesses fresh domain data without training, reduces hallucinations, simple and widely applicable. Weaknesses: hinges on retrieval quality and index freshness; too many/irrelevant chunks can harm results.

Implementation Patterns

  • Hybrid retrieval (Embeddings + BM25) and Reciprocal Rank Fusion
  • Reranking top candidates with an LLM or learned reranker
  • Context compression to fit token limits
  • Citation formatting and logging for audits

Metrics to Track

  • Retrieval precision/recall and hit rate
  • Answer accuracy (e.g., F1 on QA sets)
  • Factuality/hallucination rate
  • End-to-end latency and token cost

Artículos relacionados

¿Te gustó este artículo?

Sígueme para más recursos sobre RAG y N8N workflows.

Contáctame