IA
Standard RAG: The Foundation of Retrieval-Augmented Generation
1 de noviembre de 202512 min
por William Marrero Masferrer#RAG#AI#N8N#Vector Database#BM25
TL;DR
Standard RAG pairs an LLM with a retriever (often a vector DB) to ground answers in external documents, reducing hallucinations and enabling fresh, domain-specific knowledge.
What Is Standard RAG?
A retrieve-then-generate pipeline: split text, embed chunks, store in a vector index, perform similarity (or hybrid) search for a query, then pass retrieved context + question to the LLM for an answer.
When to Use Standard RAG
- Open-domain QA and document search
- Customer support chatbots grounded in KBs
- Research assistants requiring up-to-date facts
- Legal/medical Q&A where citations are needed
Building Standard RAG in N8N
- Preprocess: split documents into chunks (Function/Built-in nodes)
- Embed chunks and store in a vector DB (e.g., Chroma, Pinecone)
- On query: compute embedding and run top-K similarity search
- Optionally fuse with BM25/hybrid ranking or rerank
- Concatenate top results into prompt and call LLM
- Return answer with citations; log for evaluation
Strengths & Weaknesses
Strengths: accesses fresh domain data without training, reduces hallucinations, simple and widely applicable. Weaknesses: hinges on retrieval quality and index freshness; too many/irrelevant chunks can harm results.
Implementation Patterns
- Hybrid retrieval (Embeddings + BM25) and Reciprocal Rank Fusion
- Reranking top candidates with an LLM or learned reranker
- Context compression to fit token limits
- Citation formatting and logging for audits
Metrics to Track
- Retrieval precision/recall and hit rate
- Answer accuracy (e.g., F1 on QA sets)
- Factuality/hallucination rate
- End-to-end latency and token cost
Artículos relacionados
¿Te gustó este artículo?
Sígueme para más recursos sobre RAG y N8N workflows.
Contáctame